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Abstract Back Error Compensation
Based on Decision Function
This paper describes a halftone method based on the
minimization of a decision function integrates the er-We summarize the method presented in [1] where the
rors produced in the previously computed pixels. Thanethod was introduced for the general case of an arbi-
decision function is computed by weighting the pixeltrary color palette, ¢}, with N elements, each color be-
errors, according to a matrix corresponding to the HVSing a vector with S components= (c, c,, ¢,). For each
The current pixel is the minimization variable, and valuepixel in the original image, the method selects that color
that minimizes the decision function over the outputfrom the output set, that minimizes the error of color
range is selected as the output pixel value. The methag@ndition in a local arrayh, around the current investi-
is a slightly modified version of the method presentedjated pixel. Figure 1 depicts an example of a local array
in [1], concerning the computation of error term. It iscorresponding to the current pixel (j,k), when the pro-
demon-strated that, in the modified form, the minimiza-cessing direction of the image is from up to down and
tion criteria is equivalent to the error diffusion for a bi- from left to right.
nary output, but the error diffusion is the method that
requires minimum computation. The method presented
here conducts to more linear transfer function than the L L . . _
. - . 1=-2 =<1 i=0 1=1
method presented in [1]. It is alsbown that the selection . >
of the weighting matrix is not crucial and similar results/ = 2| =2n-2) (m=2n-D (m-2n) k=2n+1D
can be obtained with different weighting coefficients.  J=-1|m-1Lrn-2) (m-Ln-1) (m-1Ln) (k-Ln+1)
In the second part of the paper an error diffusionj=0{ (m,n-2) (m,n-1) (m,n)

that works independently on the processing direction is processing direction current pixel
presented. In this method, all the symmetric neighbor
pixels around the kernel center are involved in compu- Figure 1. Example of local are&(m,n)

tation. The processed neighbors contribute to compute

the modified input and the unprocessed pixels absorb For a pixel (m,n), the decision function, f(m,n), is:
the diffused error of the current pixel. Results of both

methods are presented. f(m,n) = [[in(m,n) -out(m,n) -E(m,n) ||, (1)

Introduction whereE(m,n) is the vector function:

The error diffusion is a very popular technique for digi- _ . .

tal halftoning22In [4] we introduced a variant of error B = y k)%ffl{’k)'erru’k)’ )
diffusion based on a decision function. There, the error G k#(m,n)

term was computed as a simple difference between in-

put and the output pixels, and that paper emphasized that The term w(i,j) represents the weight mask of the er-
the characteristic of the transfer function is not linearror terms inside the local arrad, As it was introduced in

In this paper, we introduce a correction for computation of1], termerr(i,j) represents the vector error defined as:
the error term in [4]. This correction improves the linearity

of the transfer function of the algorithm. It is demon- err(j,k) = in(j,k) —out(j,k), 3)
strated that, in the modified form, the algorithm is

equivalent to the error diffusion for a binary output. Infor all the elements denoted by (j,k) inside the local ar-
fact the error diffusion by thresholding is a better solu+ray, A, andin(j,k) andout(j,k) are the values of the in-
tion since it reduces to minimum the number of compuput and output image. Note that the input pix€m,n)
tation required by decision function implementation. Itis included in the function (1) and the output value
is also shown that the selection of the weighting matriout(m,n) represents the minimization variable of f(m,n).
is not crucial and similar results as those presented heFer (j,k) # (m,n), theerr (j,k) values are computed in the
can be obtained with different weighting coefficients. previous processing step using the relationship (2).
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Correction of the Error Term diffusion. In case of black and white images, the equa-
In this paper we replace the equation (2) by the retion (1) (2) and (3) are reduced to:
lationship (3) where the error term is the value of the

vector decision function: f(m,n) = | in(m,n) - out(m,n) - E(m,n) |, (1a)
err(m,n) =in(m,n) —out(m,n) —E(m,n).  (4) E(m,n) =Y w(j,k) « err(j,k), (2a)
Figure 2 presents a test wedge processed with the err(m,n) = in(m,n) - out(m,n) - E(m,n).  (3a)

method introduced in [1] (2.a) and with the correction
introduced in this paper (2.b). Figure 3 presents a sample Assuming the binary output, the f(m,n) becomes
image processed with the method introduced in [1] (2.aninimum for one of the two possible output values, 0 or
and with the correction introduced in this paper (3.b). Inl. Assuming the value 1 gives the minimum value of
[1] the pattern effect is reduced by enlarging the locaf(m,n). In this case, we have:
area, but here the weights of Floyd and Steinberg are
used. The equation (4) attenuates the pattern effect and |in(m,n) - 0 - E(m,n) | < |in(m,n) - 1 - E(m,n) |,
conducts to more linear transfer function.

or the equivalent form:

in(m,n) - E(m,n) < 0.5,

that represents the threshold comparison of the conven-
tional error diffusion. Same result can be derived from
the case that 1 is selected as the output value.

It is easy to see that the error diffusion requires the
minimum number of computation compared with the
implementation that uses the decision function. For the
multilevel error diffusion, the modified input is com-
puted first, then based on this value, the threshold value
is selected. The minimum of the decision function re-
quires the computation of f(m,n) for all the values in the
output range, increasing significantly the computation
time.

_ Sn Gaussian Weighting Mask
(a) before correction (b) after correction Empirically it was verified that the weighting coef-
ficients are not critical to the middle tone of the image.
‘?—"igure 4 shows the same region of a sample image ren-
dered using the Floyd & Steinberg coefficient mask (4.a)
and a symmetric Gaussian mask clipped to the error dif-
fusion area (4.b), for a raster processing direction, as it
is illustrated in Figure 5.

Figure 2. Test wedge processed using back error compens
tion before (a) and after (b) correction of error term.

(b) after correction

Figure 3. Sample image processed using back error compe
sation before (a) and after (b) correction of error term.

(a) Floyd-Steinberg (b) Gaussian

Equivalence to Conventional Error Diffusion
In the following we will demonstrate that the equa-Figure 4. Sample image rendered with two weighting coeffi-
tion (1), (2) and (4) are equivalent to conventional errokient sets.
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In fact, some of the region of the test sample dis- For each pixel, the algorithm computes selectively
plays a better arrangement of dots when the Gaussidahe accumulated error, E(m,n), considering only the pro-
coefficients are used instead of Floyd and Steinberg caessed pixels in the kernel,
efficients. It can be verified that other set of coefficients
gives also similar results. Figure 6 shows the sample _ . . .
image processed for asymmetric packed weights (6.a) B _(jk)%nlffl{’k)'err(J’k)'mSk(J’k)’
and clipped (unpacked) weights (6.b). This empirical (G krE(m.n)
observation is in concordance with recent theoretical
results5 that adapt the weighting mask to the gray levednd then modifies the input value:
of the input.

in’(m,n) = in(m,n) - E(m,n).
1 3 1 off off off
3 x 3+off x on= x 3 The algorithm selects the output value by thresh-
131 on on on 13 1 olding the modified input:

Figure 5. Clipping weighting mask to the error diffusion area out(m,n) = step [in’(m,n) - T].

for raster processing direction. Err(m,n) = in’(m,n) - out(m,n);

Finally, the error between the modified input and
the computed output is weighted and diffused to the re-
mained unprocessed pixels in the kernel, regardless the
processing sequence:

for (G,k) d A(m,n), (j,k) # (m,n)):
in (,k) = in(j,k) - Err(m,n).w(j,k).msk(j,k);

The error diffusion algorithm can start anywhere in
the image. The processing sequence can be selected ar-
bitrary, because a kernel pixel is automatically consid-
ered either to contribute with an error term for modified
input or to absorb the accumulated error diffused from
the center. The weighting matrix is unitary derived from
a two dimension Gaussian function. The coefficients
have symmetric values with respect to the kernel center.
The computation of a pixel involves all the pixels of the
Figure 6. Error diffusion using packed and clipped weightssymmetric kernel: part of them are used to integrate the

(a) backed i Eb) clppe

presented in Figure 7. errors of processed pixels and the remaining part serves
to diffuse the error to the unprocessed pixels.
1 2 1 2 4 For raster processing from up to down and left to
12 = 5 12 right, the process presented here is reduced to conven-

tional error diffusion. In this case the processed and un-
processed pixels are separated in two compact area as it

\a) packed weights is illustrated in Figure 8. Packing the symmetric filter

1 2 1 121 kernel of processed area over the unprocessed coeffi-
2 12 2 = 2 @ cients will result in the Floyd and Steinberg weighting
1 92 1 mask.
(b) clipped weights
Figure 7. Packing and clipping the Gaussian weights 1 3 L35
16 = 7 16
Symmetric Kernel Error Diffusion

Based on the Gaussian symmetric weighting mask,
we derive a variant of error diffusion that process therigure 8. Packing the Gaussian kernel into the Floyd and
pixel independently of the advancing direction of errorsteinberg weighting mask.
diffusion. Initially, all the pixels of the image are marked
as not processed, msk(j,k) =[0j,k. The pixel to be pro-
cessed is considered the center of a symmetric low pass Figure 9 illustrates the described algorithm process-
filter kernel,A. An example of filter kernel is presented ing the image in raster order (9.a) and increasingly gray
in the left side of Figure 7. Each processed pixel idevel order (9.b). Combination with other techniques is
marked with msk(m,n) = 1. also attractive and will be left for further discussion.
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(a) raster order (b) gray level order 4. G. Marcu, S. Abe, “An error diffusion method for color
reproduction in ink jet printing"Recent Progress in Digi-
tal Halftoning Reiner Eschbach, Ed., IS&T, 1994, p. 25—
27.

A

Figure 9. Symmetric error diffusion kernel processed in: ras-

ter order (a) and gray level order (c).

Conclusions

version have a more linear transfer function. | was demon-
strated that the presented version is equivalent to conven-
tional error diffusion. In the second part of the paper a
symmetric error diffusion algorithm is presented. The pro-
posed method enables an arbitrary direction of processing.
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